Vitamins

- Polish biochemist Casimir Funk discovered vitamin B1 in 1912 in rice bran.
- He proposed the complex be named "Vitamin" (vital amines).
- By the time it was shown that not all vitamins were amines, the word was already universal.

Vitamin - definition

- An organic compound required as a nutrient in tiny amounts by an organisms.
- It cannot be synthesized in sufficient quantities by an organism, and must be obtained from the diet.
- Vitamins have diverse biological function:
 - hormone-like functions as regulators of mineral metabolism (vit. D),
 - regulators of cell and tissue growth and differentiation (some forms of vit. A)
 - antioxidants (vit. E, C)
 - enzyme cofactors (tightly bound to enzyme as a part of prosthetic group, coenzymes)

Vitamin classification

Lipid-soluble vitamins (A, D, E and K)

- hydrophobic compounds, absorbed efficiently with lipids,
- transport in the blood in lipoproteins or attached to specific binding proteins,
- more likely to accumulate in the body,
- more likely to lead to *hypervitaminosis*

Vitamin classification

Water-soluble vitamins - 8 B vitamins and vitamin C

- Function: mainly as enzyme cofactors,
- hydrophilic compounds dissolve easily in water,
- not readily stored, excreted from the body,
- their consistent daily intake is important.

Many types of water-soluble vitamins are synthesized by bacteria.

Lipid-soluble vitamins Vitamin A

Retinol

- Biologically active forms retinoids: retinol, retinal, retinoid acid.
- Major vit. A precursors (provitamins) → plants *carotenoids*.
- Foodstaf of animals origin contain most of vit. A in the form of esters (retinylpalmitates) – *retinol* and *long fatty* acid

Cyklohexan ring and isoprenoid chain

Vitamin A and vision

- Vit. A is necessary to form rhodopsin (*in rodes, night vision*) and iodopsins (photopsins, *in cones – color vision*) visual pigment.
- Retinaldehyd is a prosthetic group of light-sensitive opsin protein.
- In the retina, all-*trans*-retinol is isomerized to 11-*cis*-retinol \rightarrow oxidized to 11-*cis*-retinaldehyd, this reacts with opsin (Lys) \rightarrow to form the holoprotein *rhodopsin*.
- Absorption of light \rightarrow conformation changes of opsin \rightarrow photorhodopsin.

Vitamin A and vision

- The following is a series of izomerisation → initiation of nerve impulse.
- The final step is hydrolysis to release all-*trans*-retinaldehyde and opsin.
- Deficiency of vit. A leads to night blindness.
- Vitamin A is an important antioxidant.

Vitamin A and other functions

Transcription and cell differentiation

 Retinoic acid regulates the transcription of genes - acts through nuclear receptors (steroid-like receptors).

- By binding to various nuclear receptors, vit. A stimulates (RAR retinoid acid receptor) or inhibits (RXR- retinoid "X" receptor) transcription of genes transcription. All-*trans*-retinoic acid binds to RAR and 9-*cis*-retinoic acid binds to RXR.
- Retinoic acid is necessary for the function and maintenance of epithelial tissues.

Vitamin A - deficiency

- The early sign \rightarrow a loss of sensitivity to green light,
 - $\hfill \ensuremath{\,\bullet\)}$ prolonged deficiency \rightarrow impairment to adapt to dim light
 - more prolonged deficiency leads to night blindness
- Ever escalated deficiency leads to squamous metaplasia columnar epithelia are transformed into heavily keratinized squamous epithelia.
- The conjunctiva loses mucus-secreting cells \rightarrow glykoprotein content of the tears is reduced $\rightarrow xeroftalmia$ ("dry eyes")
 - Often complication bacterial or chlamidial infection which results in perforation of the cornea and blindness

Vitamin A - deficiency

- Transformation of respiratory epithelium *loss of protective airway function* (antibacterial properties) \rightarrow bronchitis.
- Conversion of the urinary tract epithelium → higher frequency of urinary stone formation
- Immunosuppression
- Impairment of reproductive function (both in men and women).
- Worldwide deficiency of vit. A
- 3 10 mil. children become xerophtalmic every year
 - 250 000 to 500 000 go to blindness
 - 1 million die from infections

Vitamin A - toxicity

- Toxic dose:
 - single dose of more than 200 mg
 - more than 40 mg per day
- Acute symptoms headache, vomiting, impaired consciousness.
- Chronic intoxication weight loss, vomiting, pain in joints, muscles, blurred vision, hair loss, excessive bone growth.
- Both vit. A excess and deficiency in pregnancy are *teratogenic* retinoic acid is gene regulator during early fetal development
- Carotenoids are non toxic accumulation in tissues rich in lipids (the skin of babies overdosed with carrot juice may be orange).

Metabolic functions of vitamin A

- Vision
- Gene transcription
- Immune function
- Embryonic development and reproduction
- Bone metabolism
- Haematopoieis
- Skin health
- Antioxidant activity

Sources of vitamin A

- cod liver oil
- meat
- egg
- milk
- dairy products

- carrot
- broccoli
- spinach
- papaya
- apricots

Sources of vitamin A and beta-carotene:

Vitamin A comes from animal sources such as eggs, meat and dairy products

Beta-carotene, a precursor of vitamin A, comes from green, leafy vegetables and intensely colored fruits and vegetables

ADAM.

Vitamin D

- Calciol, vitamin D_2 (cholecalciferol) \rightarrow precursor of calcitriol, D_3 (1,25-dihydroxycalciferol).
- Regulates with PTH calcium and phosphate level (absorption, reabsorption, excretion).
- Synthesis in the skin (7-dehydrocholesterol) UV \rightarrow further transformation in the liver and kidneys .

Non-enzymatic reaction in the skin

Transport to the liver

Inactive form

Effects of vitamin D

- Transported in the blood on a carrier (vitamin-D binding protein, VDBP).
- 1,25(OH)₂D binds to intracellular receptors (intestine, bone, kidney).
- The main function is to maintain plasma levels of calcium (essential for neuromuscular activity) and phosphate levels:
 - increase Ca absorption in the intestine,
 - reduce the excretion of calcium (stimulates parathyroid hormonedependent Ca reabsorption in the distal tubule),
 - mobilizing bone mineral, together with parathyroid hormone

Vitamin D - deficincy

- Failure of absorption in the intestine.
- The lack of the liver and the renal hydroxylation of vit. D (congenital deficiency of 1-hydroxylase).
- The lack of UV irradiation.
- The main manifestation impaired ossification of the newly created osteiod, abundance of non mineralized matrix.
- Vit. D is necessary for the prevention of skeletal changes (rickets in growing individuals, osteomalacia in adults).

Vitamin D and imunity

- It increases the activity of natural killer cells (cytotoxic lymphocytes).
- Increases the phagocytic ability of macrophages .
- Reduces the risk of virus diseases (colds, flu).
- Reduces the risk of many cancers (colon, breast and ovarian cancer).
- Reduces the risk of cardiovascular disease → have a positive impact on the composition of plasma lipids.

Sources of vitamin D

- In addition to sunbathing:
- various fish species (salmon, sardines and mackerel, tuna, catfish, eel), fish oil, cod liver
- eggs, beef liver, mushrooms

Vitamin E

- Vitamin E is a family of α-, β-, γ-, δ- tocopherols and corresponding tocotrienols izomers.
- They are formed from chroman ring and hydrofobic fytyl side chain.
- The highest biological activity has α -tokoferol.

Vitamin E (α -tocopherol)

Vitamin E

- Adsorbtion from the small intestine.
- Its absorption is dependent on the presence of lipids in the diet.
- Associated with plasma lipoproteins → liver uptake through receptors for apolipoprotein E.
- α -tocopherol is bind to α -tocopherol transport protein (α -TTP) \rightarrow transported to the target organs (the excess is stored in adipocytes, in muscle, liver).
- β -, γ a δ -tocopherols are transferred into the bile and degraded.

Vitamin E as antioxidant

 Stops free radical reactions (peroxyl radicals ROO[•], oxygen radicals HO[•], lipoperoxid radicals LOO[•]). Chroman ring with OH group → uptake radicals.

Vitamin E as enzyme cofactor

- α -tocopherol quinon generated by oxidation of α tocopherol can acts as a cofactor of mitochondrial unsaturated fatty acids .
- α-tocopherol quinon + cytochrom B₅ + NADH+H⁺ initiate formation of double bonds in FA – temporarily changes to α-tocopherol-hydroquinon (in the presence of O₂ changes back to α-tocopherol quinon).

Vitamin E – deficiency and toxicity

- The lack of α-tocopherol in plasma is often associated with impaired fat absorption or distribution (in patients with cystic fibrosis, in patients with intestine resection)
- deficit of vit. D exhibit neurological problems, impaired vision, eye muscle paralysis, platelet aggregation, impairment of fertility in men, impaired immunity.
- Toxicity is relatively small.

Sources of vitamin E

- fortified cereals
- seeds and seed oils, like sunflower
- nuts and nut oils, like almonds and hazelnuts
- green leafy vegetables,
- broccoli
- cabbage
- celery

Vitamin E is found in corn, nuts, olives, green, leafy vegetables, vegetable oils and wheat germ

http://health.allrefer.com/health/nutrition.html

Vitamin K

- Vitamin K is a group of lipophilic, hydrophobic vitamins.
- They are needed for the postranslation modification of proteins required for blood coagulation,
- They are involved in metabolism pathways, in bone mineralisation, cell growth, metabolism of blood vessel wall.

Vitamin K

- Vitamin K₁ (phylloquinon) plant origin
- Vitamin K₂ (menaquinon) normally produced by bacteria in the large intestine
- K₁ a K₂ are used differently in the body
 - K₁ used mainly for blood clothing
 - K₂ important in non-coagulation actions - as in metabolism and bone mineralization, in cell growth, metabolism of blood vessel walls cells.

Vitamin K - function

- Cofactor of liver microsomal *carboxylase* which carboxylates glutamate residues to γcarboxyglutamate during synthesis of prothrombin and coagulation factors VII, IX a X (posttranslation reaction).
- Carboxylated glutamate chelates Ca²⁺ ions, permitting the binding of blood clotting proteins to membranes.
- Forms the binding site for Ca²⁺ also in other proteins

 osteocalcin.

Vitamin K - deficiency

- Deficiency is caused by fat malabsorption or by the liver failure.
- Blood clotting disorders dangerous in newborns, life-threatening bleeding (*hemorrhagic disease of the newborn*).
- Osteoporosis due to failed carboxylation of osteokalcin and decreased activity of osteoblasts.
- Under normal circumstances there is not a shortage, vit. K is abundant in the diet.

Sources of vitamin K

- Green leafy vegetables
- vegetable oil
- broccoli
- cereals

http://health.allrefer.com/health/nutrition.html

Water soluble vitamins

- Vitamin B₁ (thiamine)
- Vitamin B₂ (riboflavin)
- Vitamin B₃ or Vitamin P or Vitamin PP (niacin)
- Vitamin B₅ (panthotenic acid)
- Vitamin B₆ (pyridoxine and pyridoxamine)
- Vitamin B₇ or Vitamin H (biotin)
- Vitamin B₉ or Vitamin M and Vitamin B-c (folic acid)
- Vitamin B₁₂ (cobalamin)

Vitamin B₁ (thiamine)

- Thiamin has a central role in energy-yielding metabolism.
- Composed of a substituted pyridine and thiazole ring.
- Active form is thiamine diphosphate (thiamin pyrophosphate, TPP), a coenzyme for three multienzyme complex \rightarrow
- This complex catalyses oxidative decarboxylation of $\alpha\text{-ketoacids} \rightarrow$
 - *pyruvate dehydrogenase* in carbohydrate metabolism,
 - α -ketoglutarate dehydrogenase \rightarrow cytric acid cycle,
 - Branched-chain keto-acid dehydrogenase .
 - TPP is coenzyme for *transketolase* pentose phosphate pathway.

Vitamin B₁ - deficiency

- Mild deficiency leads to gastrointestinal complients, weakness
- 2. Moderate deficiency peripheral neuropathy, mental abnormalities, ataxia
- 3. Full-blown deficiency *beri-beri* characterized with severe muscle weakness, muscle wasting and delirium, paresis of the eye muscles, memory loss.
- Degeneration of the cardiovascular system.
- Beri-beri causes long-term consumption of foods rich in carbohydrates but poor in thiamine - husked rice, white flour and refined sugar.

Source of vitamin B₁

 paddy grains, cereals meat yeast honey nuts

*ADAM.

Vitamin B₂ (riboflavin)

- Yellow to orange-yellow natural dye slightly soluble in water.
- Has a central role in energy-yielding metabolism.
- Provides the reactive moieties of the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotid (FAD).
- Flavin coenzymes are electron carries in oxidoreduction reaction.

Vitamin B₂

© Elsevier. Meisenberg & Simmons: Principles of Medical Biochemistry 2e - www.studentconsult.com

FMN \rightarrow ATP-dependent phosphorylation of riboflavin FAD \rightarrow further reaction with ATP in which its AMP moiety is transferred to FMN.

FMN a FAD function

- FMN and FAD act as prosthetic groups of many oxidoreduction enzymes, flavoprotein:
- *oxydase* of α -amino acids degradation of amino acids
- xantinoxidase degradation of purines
- aldehyde dehydrogenas
- mitochondrial glycerol-3-phosphate dehydrogenase transport of reducing unit (H⁺) from mitochondra to cytosol
- succinate dehydrogenas citric acid cycle
- succinyl CoA-dehydrogenase β -oxidation of FA
- NADH-dehydrogenase part of respiratory chain in mitochondria
- coenzymes in hydrogen transfer formation of reducing forms -FMNH₂ a FADH₂

Vitamin B₂ absorption

Riboflavin is absorbed in the proximal intestine.

 Riboflavin is stored mainly in the liver, kidney and heart in the form of FAD (70- 90%) or FMN.

Causes of vitamin B₂ deficiency

- Lack of dietary vitamin B.
- A result of conditions that affect absorption in the intestine.
- The body not being able to use the vitamin.
- An increase in the excretion of the vitamin from the body.

Vitamin B_2 – symptoms of deficiency

- Cracked and red lips.
- Inflammation of the lining of mouth and tongue.
- Dry and scaling skin- keratitis, dermatitis and irondeficiency anemia

Sources of vitamin B₂

- foods of animal origin (liver, pork and beef, milk, dairy products, fish eggs)
- cocoa,
- nuts,
- yeast,
- of smaller quantities in cereals.

http://health.allrefer.com/health/nutrition.html

Vitamin B₃ - niacin

- Active form nikotinic acid and nikotinamid.
- NAD a NADP → key components of the metabolic pathways of carbohydrates, lipids, amino acids.
- Nicotinic acid prevents the release of fatty acids from adipose tissue, decreases lipoproteins VLDL, IDL a LDL.
- High dose of niacin dilates blood vessels .

Vitamin B₃ - niacin

- Absorption:
 - At low concentration by active transport.
 - At high concentration by passive diffusion.
- Transportation:
 - Both nicotinic acid (NA) and nicotinamide (NAm) bind to plasma proteins for transportation.
- Biosynthesis:
 - The liver can synthesize *Niacin* from the essential amino acid tryptophan, but the synthesis is extremely slow and requires vitamin B₆ (60 mg of Tryptophan= 1mg of niacin). Bacteria in the gut may also perform the conversion but are inefficient.

Vitamin B₃ - deficiency

- Pellagra: A serious deficiency of niacin.
- The main results of pellagra can easily be remembered as "the four D's": diarrhea, dermatitis, dementia, and death.
- Pelagra is very rare now, except in alcoholics, strict vegetarians, and people in areas of the world with very poor nutrition.
- Milder deficiencies of niacin can cause dermatitis around the mouth and rashes, fatigue, irritability, poor appetite, indigestion, diarrhea, headache.

Sources of vitamin B₃

- foods of animal origin
- yeast
- sunflower seeds, beans, peas
- green leafy vegetable
- broccoli, carrots

Food sources of Niacin (vitamin B3) include dairy, poultry, fish, lean meat, nuts and eggs

Vitamin B₅ – panthotenic acid

Part of acetyl-CoA – consists of pantoic acid and

Acetyl coenzyme A, showing its constituents

Vitamin B_5 – panthotenic acid

• Co-enzyme A assists the following reactions:

- formation of sterols (cholesterol and 7dehydrocholesterol).
- formation of fatty acids.
- formation of keto acids such as pyruvic acid.
- Other reactions are acylation, acetylation, signal transduction deamination

Vitamin B₅ - deficiency

Rare to occur.

- When occur it leads to paresthesias.
- Disorders of the synthesis of acetylcholine neurological symptoms (parestesie).

Sources of vitamin B₅

- meat, foods of animal origin,
- yeast,
- wholemeal bread,
- broccoli, avocado
- royal gelly

Vitamin B₆

 Prekursor of active coenzyme pyridoxalphosphate – PPL.

c) Elsevier. Meisenbera & Simmons: Principles of Medical Biochemistry 2e - www.studentconsult.com/

Vitamin B₆

- Vitamin B₆ is needed for more than 100 enzymes involved in protein metabolism.
- It is also essential for red blood cell metabolism and hemoglobin formation.
- The nervous and immune systems need vitamin B₆ to function efficiently.
- It is also needed for the conversion of tryptophan to niacin (vitamin B₃).
- Vitamin B₆ also helps maintain blood glucose within a normal range. When caloric intake is low, vitamin B₆ helps to convert stored carbohydrate or other nutrients to glucose to maintain normal blood sugar levels.

Transamination reaction

Vitamin B₆ deficiency

Signs of vitamin B₆ deficiency include:

- <u>Skin:</u> *dermatitis* (skin inflammation), *stomatitis* (inflammation of the mucous lining of any of the structures in the mouth), *glossitis* (inflammation or infection of the tongue).
- <u>Neurological abnormalities</u>: Depression, confusion, and convulsions.
- Vitamin B₆ deficiency also can cause anemia.

Vitamin B₆ – narural sources

- cereals,
- beans,
- meat,
- liver,
- fish,
- yeast,
- nuts and some fruits as banana
- potatoes.
- It is also produced by bacterial flora in the colon.

Vitamin B₇ - biotin

Prosthetic group of *pyruvate carboxylase,* acetyl-CoA carboxylase and other ATPdependent carboxylases.

Biotin – natural source

- liver
- meat
- kidney
- yeast
- egg yolk
- mushrooms
- milk and diary products.

Vitamin B₉ – folic acid

 Consist of pteroic acid - pteridine + paraaminobenzoic acid (PABA) + glutamic acid

Glutamate

Pteroyl-monoglutamate (the absorbed form of folic acid)

Vitamin B₉ – folic acid

- Active metabolit of folic acid is tetrahydrofolate (THF).
- THF is coenzym of transferases carrying one carbon units.
- This reaction participate in nucleotide and nucleic acid synthesis
- N⁵,N¹⁰-THF carries one carbon units (methylen or methenyl).

Folic acid deficiency

Deficiency results in elevated levels of homocystein.

Deficiency in pregnant women can lead to birth defects.

Sources of vitamin B₉

- sources of animal origin
- milk and milk products
- yeast
- greens

Vitamin B₁₂ - cobalamin

- Chemically most complex vitamin
- Complex of organic compounds atom within the molecule is Co, similar to the heme.
- In man there are two metabolically active forms: methylkobalamin a adenosylkobalamin.

Vitamin B₁₂ - cobalamin

- Cobalamin catalyses two reactions
 - Cytoplasmic *methylation of homocystein* to *methionin*.
 - Mitochondrial *methylmalonyl-CoA mutase* (methylmalonyl-CoA → sukcynyl-CoA) needs *deoxy adenosylkobalamin.*

Vitamin B₁₂ – cobalamin

- Essential for the maturation of erythrocytes.
- Protects against pernicious anemia.
- Essential for cell growth and reproduction.
- Essential for the formation of myelin and nucleoproteins.

Vitamin B₁₂ – cobalamin

- Vitamin B₁₂ in food is bound to the protein.
- Hydrochloric acid in the stomach releases free vitamin B₁₂.
- Once released vitamin B₁₂ combines with a substance called intrinsic factor (IF). This complex can then be absorbed by the intestinal tract.

Sources of vitamin B₁₂

- fish and shellfish,
- meat (especially liver),
- poultry,
- eggs,
- milk, and
- milk products

while lacto-ovo vegetarians usually get enough $\rm B_{12}$ through consuming diary products, vegan will lack $\rm B_{12}$

Vitamin C

- Vitamin C is a water-soluble vitamin.
- Almost all animals and plants synthesize their own vitamin C, not man.
- Vitamin C was first isolated in 1928 and in 1932 it was proved to be the agent which prevents scurvy.

Vitamin C

- Vitamin C is a weak acid, called ascorbic acid or its salts "ascorbates".
- It is the L-enantiomer of ascorbic acid.
- The D-enantiomer shows no biological activity.

The role of vitaminC

- Cofactor in the synthesis of norepinephrine from dopamine.
- Involved in a variety of metabolic processes (oxidation-reduction reactions and cellular respiration, carbohydrate metabolism, synthesis of lipids and proteins).
- antioxidant and free radical scavenger → maintain proper immune system.

The role of vitaminC

- T-lymphocyte activity, phagocyte function, leukocyte mobility, and possibly antibody and interferon production seem to be increased by vitamin C.
- Involved in the synthesis of collagen, the major component of ligaments, tendons, cartilages and skin.
- Involved in tyrosine metabolism.

Deficiency of vitaminC

- Fatigue, personality changes, decline in psychomotor performance and motivation.
- Vitamin C deficiency over 3-5 months results in symptomatic scurvy.
- Scurvy leads to the formation of liver spots on the skin, spongy gums, and bleeding from all mucous membranes.
- In advanced scurvy there are open, suppurating wounds and loss of teeth. Severe scurvy may progress to neuritis, jaundice, fever, dyspnea, and death.

Vitamin C as antioxidant

Vitamin C as antioxidant

Vitamin C as pro-oxidant

- Ascorbic acid reduces transition metals Cu²⁺, to Cu⁺, and Fe³⁺ to Fe²⁺ during conversion from ascorbate to dehydroascorbate. This reaction can generate superoxide and other ROS:
- Fenton's reaction:
- (1) $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH_1 + OH_2$
- (2) $Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + OOH_{\bullet} + H^+$

 $2 \text{ Fe}^{2+} + 2 \text{ H}_2\text{O}_2 \rightarrow 2 \text{ Fe}^{3+} + 2 \text{ OH}_{\bullet} + 2 \text{ OH}_{-}$

2 Fe³⁺ + ascorbate \rightarrow 2 Fe²⁺ + dehydroascorbate